Download
Download

Download Manuals, Datasheets, Software and more:

DOWNLOAD TYPE
MODEL or KEYWORD

3D Sensing Defining Requirements for Electrical Test of Optical Devices

3D sensing augments a camera's object & facial recognition.

3D sensing is a depth sensing technology that augments camera capabilities for facial and object recognition in augmented reality, gaming, autonomous driving and a wide range of applications.

  • One way to sense 3D is using structured light. Coherent infrared light is transmitted onto an object with a structured pattern. The reflected light can be decoded to construct a 3D image.
  • Another way to sense 3D is to use Time of Flight (ToF). A light source transmits a series of infrared light and the photon phase difference to the light bounced off an object is used to sense the proximity of an object.

 

2600B_LED-2

 

2600b-vcsels-502px

Diode-based optical devices enable 3D sensing.

Diode-based devices such as laser diodes, high brightness LEDs (HBLED), and photodiodes (PD) are key optical devices that enable 3D sensing.

  • Laser diodes are capable of outputting a narrow and coherent light beam. Two common types of laser diodes are edge emitter laser (EEL) and the fast-growing VCSEL (vertical cavity surface emitting laser). VCSEL combines the advantage of low cost manufacturability, optical efficiency, temperature stability, and large 2D arrays for increased power. EEL operates at a higher frequency that can travel hundreds of miles without loss in a fiber medium commonly for optical communication.
  • HBLEDs or LEDs disperse incoherent light in a wide pattern. They are the most efficient source of high quality white light, hence great for illumination. Efficiency droop, limited modulation capability, and resolution make them only suitable for some applications.
  • PDs detect and convert light into current. Very sensitive instruments for low PD current measurement are required to characterize the full range light intensity of the light source properly.

 

Keithley instruments perform electrical testing on diode-based devices.

Wavelength stability over the entire operating temperature of these devices is critical to maintaining precision and minimize noise in received signals. Electrical efficiency measurement through precision trigger and synchronization of pulse width and duty cycle further optimize the required intensity and resolution of illumination. These directly impact the heat dissipation, power consumption, and battery life of the end system.

Keithley has an extensive portfolio of instruments for electrical tests, including light intensity, forward voltage, lasing threshold current, quantum efficiency, dark current, the presence of “kink” or kink test, slope efficiency, thermistor resistance, temperature, capacitance, and the full spectrum of L-I-V pulse testing of laser diodes and HBLEDs.

Learn from Keithley experts.

The application engineers at Keithley offer white papers, application notes and blogs on these topics and more.

 

 

 

LaserDiode_VCSEL_502px

Library

Title
The Next Big LED Testing Challenge: High Power LED Modules
Photodetectors - Choose and Use Wisely for Best Results in Pulsed Laser Diode Test Systems
Instrumenting DWDM Laser Diode Production Tests
Dense Wavelength-Division Multiplexing (DWDM) fiber optic communications is the current, if not the ultimate, solution to our voracious bandwidth appetite in the Internet Age.
Pulse Testing High Brightness LEDs Accurately using the 2461 High Current SourceMeter® SMU Instrument
This application note provides information on typical HBLED tests and how to perform them using the pulse functionality of the 2461. Directions on how to set up the tests from the front panel are …
Application Overview: Simplified I/V Characterization of LEDs
#2273 VCSEL Testing with the Model 2400 SourceMeter Instrument
Application Note Number 2273 VCSEL Testing with the Model 2400 SourceMeter Instrument The recent commercialization of vertical-cavity surface-emitting lasers (VCSELs, pronounced "vixsels") into areas …
Avoiding Inrush Current when Testing High Power LEDs with Series 2260B Power Supplies
Testing High Brightness LEDs under Pulse Width Modulation Using the Model 2651A High Power SourceMeter Instrument
Enhancing Trigger Synchronization for High Volume Production Testing of VCSELs
This application note uncovers several effective test methodologies for achieving a highly synchronized trigger system on a Keithley Series 2600B SMU instrument.
Testing High Brightness LEDs Accurately Using the Model 2460 High Current SourceMeter SMU Instrument
Laser Diode Array Test for 3D Sensing
This application note describes how to integrate bench instruments effortlessly into a holistic system and achieve industry’s best trigger synchronization and maximum throughput for any automated or …